Generalized spin-squeezing inequalities for particle number with quantum fluctuations
Ibrahim Saideh  1, 2, *@  , Simone Felicetti  3@  , Perola Milman  2@  , Thomas Coudreau  2@  , Arne Keller  1@  
1 : Institut des Sciences Moléculaires d'Orsay  (ISMO)  -  Site web
CNRS : UMR8214, Université Paris XI - Paris Sud
Université Paris-Sud 91405 Orsay cedex -  France
2 : Matériaux et Phénomènes Quantiques  (MPQ)  -  Site web
CNRS : UMR7162, Université Paris VII - Paris Diderot
Université Paris Diderot, Bât. Condorcet , 10 rue Alice Domon et Leonie Duquet, Case 7021, 75205 Paris cedex 13 -  France
3 : Laboratoire Matériaux et Phénomènes Quantiques, Sorbonne Paris Cité, Université Paris Diderot  (MPQ)  -  Site web
Université Paris Diderot - Paris 7
10 rue Alice Domon et Léonie Duquet 75013 Paris -  France
* : Auteur correspondant

Particle number fluctuations, no matter how small, are present in experimental setups. One should
rigorously take these fluctuations into account, especially for entanglement detection. In this context,
we generalize the spin-squeezing inequalities introduced by G. Tóth et al. [Phys. Rev. Lett. 99,
250405 (2007).]. These new inequalities are fulfilled by all separable states even when the number
of particles is not constant and may present quantum fluctuations. These inequalities are useful for
detecting entanglement in many-body systems when the superselection rule does not apply or when
only a subspace of the total system Hilbert space is considered. We also define general dichotomic
observables for which we obtain a coordinate-independent form of the generalized spin-squeezing
inequalities. We give an example where our generalized coordinate-independent spin-squeezing in-
equalities present a clear advantage over the original ones.


Personnes connectées : 1